

17th International Conference on Travel Behaviour Research – IATBR July 14-18, 2024 – Vienna, Austria

Heterogeneity in preferences for alternative fuel vehicles: A latent class choice model including psychological factors

Cristian Domarchi Elisabetta Cherchi Quoc C.Vuong

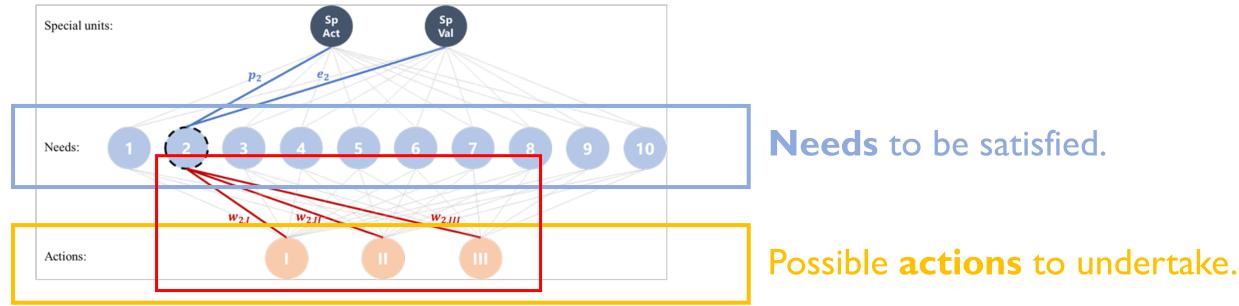
17.07.24

- Typically, choice modelling studies address preference heterogeneity using methods such as:
 - Deterministic and random heterogeneity.
 - Latent class-choice models with psychological variables.
 - Hybrid latent variable-choice models with psychological variables.
- Psychological effects are often studied using attitude-behaviour link theories, including constructs such as:
 - General or alternative-specific attitudes (e.g. pro-environmental or pro-innovation).
 - Behavioural intentions.
 - Mediators and moderating factors including habit, inertia, social influence, affective appraisal.

- Attitude-behaviour link theories offer a simplified representation of decisionmaking, as they:
 - Consider independent evaluations for each attitudinal component.
 - Assume linear and unidirectional links between them.
 - Neglect the interaction between determinants and outcomes of the behavioural decision.
- This can hamper the analysis of complex decisions (e.g. vehicle purchases).
- Theories of cognitive consistency challenge these assumptions.

Aims and contributions

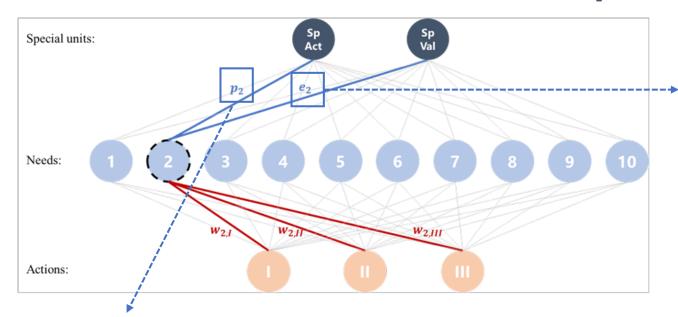
- Aim: To study the impact of the decision-making process in EV choices, following the theory of cognitive consistency.
- To do this, we:
 - Design a stated choice (SC) experiment and attitudinal questionnaire to collect information about a sample of households ...
 - ...implement the Hot Coherence (HOTCO) framework to understand attitudinal and emotional evaluations of vehicle fuel types in the sample...
 - ...incorporate these results into a **latent class-discrete choice model** to analyse preferences for fuel types...
 - ...validate our specification using an independent dataset.



Hot coherence model

- The Hot coherence (HOTCO) model (Thagard, 1989; 2006) is a cognitive consistency theory.
- It represents decision-making as a **connectionist network**.
- Needs (motivation nodes) and actions (behavioural-response nodes) interact with each other.
- When faced with a decision, individuals attempt to maximise the **coherence** between their beliefs and the possible actions.

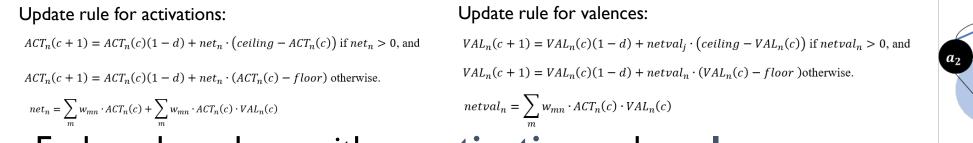
• A connectionist network and its **inputs**:



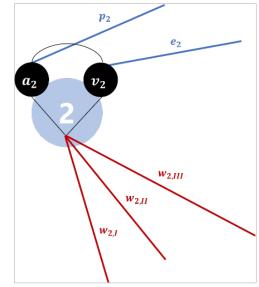
Facilitation weights linking needs and actions:

- **Positive** if the action facilitates the need (coherence).
- Negative if the action impedes the need (incoherence).

• A connectionist network and its **inputs**:


Emotional score: Emotional assessment of the need.

Priority: Intrinsic importance of the need.



The HOTCO algorithm:

- Activation (attitudinal evaluation) and valence (emotional appraisal) are spread iteratively through the network.
- At each iteration, the nodes **update** their activation and valences (in parallel).
- The process is repeated until the network is "settled".

- Each node ends up with an activation and a valence score .
- The final network is said to represent a **coherent** mental representation of the decision.

Data (I) – Basics

- We conducted a **survey** with the Prolific panel in 2022–23 to study vehicle type choice between three options: EV, HEV, ICE (Petrol/Diesel).
- Participants came from households in England which currently own at least one car. They were only included if they take part in the car purchase decision.

Dimension	Variable	Level	Main Survey	Reference (NTS 2021-R)	Dimension	Variable	Level		Reference (NTS 2021-R)
	Total respondents	-	620	_	Cars	% of households by	<15	5.8	.9
Sample size	Number of complete responses	_	555	-		annual income	30 – 44	24.6	24.7
-	Mean response time (minutes)	_	14	_		(Thousands of £)	45 – 60	20.1	9.2
		0	_	_		(60 – 150	28.6	26.8
	% of households by number of cars	1	52.3	56.3			>150	1.3	4.1
		2	37.8	35.9		Mean annual income (Thousands of £)		56.6	52.2
		3 or more	9.9	7.8					
-	Mean cars per household	_	1.60	1.53			1	13.0	22.2
Cars	% of households by number of driving licences	1	26.7	38.3		% of households by size (Persons)	2	35.3	41.3
		2	58.7	53.4			3	19.3	16.2
		3	9.9	5.9			4 or more	32.4	20.2
		4 or more	4.7	1.8		Mean size (persons)	-	2.82	2.42
	Mean licences per household	_	1.94	1.70		% of urban households	-	69.0	74.0

Data (2) – HOTCO questionnaire and inputs

• Motives for car purchase were sourced from the literature and validated with an exploratory survey.

Motive	Sentence
Environmental awareness	A car that is environmentally friendly
Performance	A car that offers a good performance, in terms of speed, acceleration, handling, and brakes
Purchase cost	A car with a low purchase cost
Pleasure/Enjoyment	A car that makes you enjoy the driving experience
Pro-technological orientation	A car with advanced technological features and gadgets
Pro-innovative orientation	A car that satisfies your curiosity for innovation
Comfort	A car that makes you feel comfortable when driving
Flexibility	A car that provides flexibility for your daily activities
Convenience	A car that provides a convenient mean to carry out your daily activities
Self-identification	A car that distinguishes you from others

• Inputs for each need: priority, emotional evaluation, facilitation weights with each alternative (EV, HEV, ICE).

Data (3) – Stated choice experiment

- **I5 possible designs (Ngene)**: Five vehicle segments x Three purchase options (new, 2nd hand, both).
- Nine choice situations (simulated car purchases).
- Five attributes in each choice situation.
- We used **Survey Engine** to administer the survey.

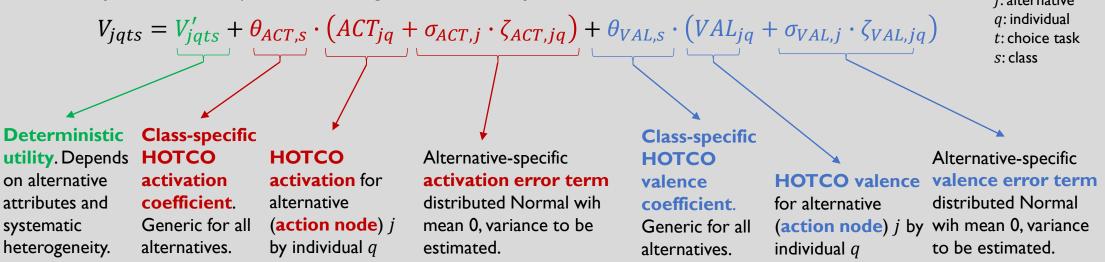
	Petrol	Electric	Hybrid-electric	None
Upfront cost Includes purchase price plus any taxes, rebates, or subsidies that may apply.	\$32,000	£32,000	£31,000	
Operation cost (per 100 miles) Expenses for fuel or electricity	£16.5	£6.6	£5.1	
Distance to recharge/refuel Average distance from home to the nearest charging station.	0.8 miles	1.1 miles	0.8 miles	
Driving range Maximum number of miles before recharge/refuel.	480 miles	500 miles	885 miles	
Charging time Time to get the vehicle charged up to 80% of its capacity (tank/battery).	3 minutes	20 minutes	3 minutes	
Which would you choose?	Ó	0	0	Ó

 $U_{jqts} = V_{jqts} + \varepsilon_{jqts} + \sigma_j \cdot \eta_{jq}$

• Latent class-choice model. Class-specific conditional choice utilities:

- We model a mixed multinomial logit (MMNL) structure, considering correlation between choices by the same individual.
- The utility functions have the following generic form:

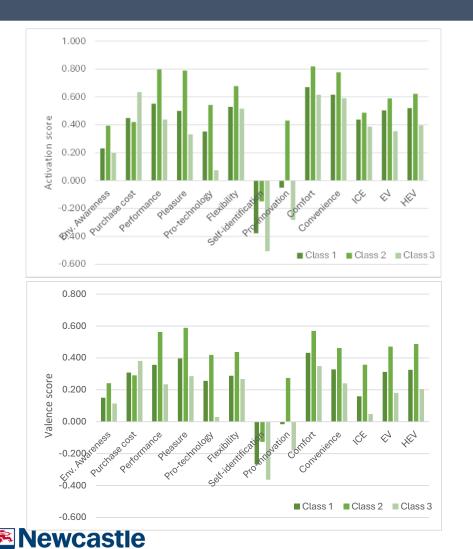
j: alternative q: individual t: choice task s: class


Class-specific utility. Depends on alternative attributes, systematic heterogeneity, **plus** HOTCO variables.

Random component of the utility function. Conditional to the realisation of the error term, the probabilities have an MNL form. **Panel effect.** Random term distributed Normal with mean 0 and variance to be estimated.

• Latent class-choice model. Class-specific conditional choice utilities:

• We treat the HOTCO terms for the **need** nodes as "latent variables" (unobserved initially but measured as a combination of the HOTCO inputs that were collected using the questionnaire), considering alternative-specific error terms:


Results (I) – Class-specific probability functions

			Baseline model	Latent class choice model				
Туре	Attribute	Alternative		Generic	Class-specific			
					Class I (46.8%)	Class 2 (15.5%)	Class 3 (37.8%)	
			Coef. (T-Test)	Coef. (T-Test)	Coef. (T-Test)	Coef. (T-Test)	Coef. (T-Test)	
		EV	10.075 (10.59)	_	12.223 (8.56)	2.545 (1.33)	19.798 (9.98)	
	Alternative-specific constants	HEV	10.433 (11.96)	_	12.3 (10.73)	4.873 (3.60)	18.351 (11.18)	
		ICE	8.550 (9.72)	_	10.074 (8.15)	2.337 (1.41)	16.205 (9.82)	
	Purchase price (Thousands of GBP)	EV; HEV; ICE	-0.168 (-14.34)	_	-0.149 (-9.61)	-0.020 (-1.07)	-0.595 (-8.78)	
	Annual exerction cost (Thousands of CPD)	EV	-2.959 (-8.45)	_	-4.889 (-7.54)	-0.383 (-0.59)	-3.304 (-4.77)	
Vahiele etteihutee	Annual operation cost (Thousands of GBP)	HEV; ICE	-2.169 (-9.51)	_	-3.158 (-6.21)	-0.574 (-1.06)	-2.617 (-6.36)	
Vehicle attributes	Distance to charge (Miles)	EV; HEV; ICE	-0.456 (-4.41)	_	_	_	-1.279 (-4.72)	
	Distance to charge x Charger awareness	EV	0.395 (2.56)	_	_	_	0.834 (1.94)	
	Driving range (Hundreds of miles)	EV	0.297 (9.97)	_	0.445 (4.60)	0.425 (2.36)	0.263 (1.66)	
		HEV; ICE	0.410 (7.59)	_	0.292 (4.48)	0.169 (1.51)	0.435 (6.03)	
	Charging time (Hours)	EV; HEV; ICE	-0.800 (-8.70)	_	-1.218 (-6.62)	-0.592 (-2.12)	-0.882 (-2.67)	
	Annual mileage (Thousands of miles)	ICE	0.601 (3.41)	_	0.274 (1.19)	0.524 (1.06)	1.428 (1.96)	
Inertia	New vehicles	EV; HEV; ICE	0.402 (2.39)	_	0.516 (2.13)	1.291 (3.18)	1.278 (2.27)	
НОТСО	Activation	EV; HEV; ICE	0.569 (3.53)	_	0.404 (1.29)	4.685 (3.41)	0.437 (1.10)	
parameters	Valence	EV; HEV; ICE	I.094 (4.85)	_	_	2.331 (1.60)	1.793 (2.55)	
	Panel effects	Opt-out	4.977 (11.11)	5.457 (12.62)	_	_	_	
		EV	-0.508 (-1.70)	1.613 (10.75)	_	_	_	
		HEV	0.555 (4.49)	0.164 (0.48)	_	_	_	
		ICE	-1.183 (-2.96)	-1.282 (-3.19)	_	_	_	
Random term	Activation error component	EV	0.433 (0.32)	0.192 (2.01)	_	_	_	
variances		HEV	-0.056 (-0.20)	0.628 (2.87)	_	_	_	
		ICE	-1.000 (-1.08)	-0.082 (-1.07)	_	_	_	
		EV	-1.359 (-4.52)	-0.565 (-1.81)	_	_	_	
	Valence error component	HEV	-0.265 (-1.29)	0.095 (0.66)	_	_	_	
		ICE	0.755 (2.45)	-0.851 (-2.38)	_	_	_	

Results (2) – Class membership functions + Model fit

			Latent class choice model				
T		Baseline model	Generic	Class-specific			
Туре	Attribute			Class I (46.8%)	Class 2 (15.5%)	Class 3 (37.8%)	
		Coef. (T-Test)	Coef. (T-Test)	Coef. (T-Test)	Coef. (T-Test)	Coef. (T-Test)	
	Class-specific constant		-	_	-7.546 (-2.48)	_	
ndividual attributes	Gender (Male = 1)		_	_	1.607 (2.06)	_	
	Number of driving licences	_	_	_	0.815 (1.61)	-	
	Number of employed people		_	_	-1.354 (-2.43)	-0.348 (-2.34)	
Household attributes	Household has bought a car new		-	_	_	-0.810 (-2.30)	
Household attributes	Household owns a medium car	_	_	_	1.165 (1.52)	_	
	Household owns a large car	_	_	_	1.899 (1.84)	_	
	Household owns a SUV/MPV	_	_	_	1.640 (1.68)	_	
	Activation 2: Purchase price	_	_	_	-	1.235 (3.23)	
	Activation 3: Driving performance	_	_	_	1.817 (1.52)	_	
	Activation 4: Technological features	_	_	_	2.755 (2.34)	_	
	Activation 5: Driving enjoyment	_	_	_	-2.044 (-2.58)	_	
HOTCO attributes	Activation 8: Curiosity for innovation	_	_	_	1.344 (2.37)	_	
	Activation 10: Convenience	_	_	_	2.817 (1.92)	_	
	Valence 5: Driving enjoyment	_	_	_	_	-1.027 (-2.38)	
	Valence 6: Flexibility	_	_	_	_	1.324 (1.78)	
	Valence 10: Convenience	_	_	_	_	-1.320 (-2.00)	
	Log-likelihood (*)	-3806.9	-3524.1				
	Number of individuals	525	525				
	Number of observations	4,725	4,725				
Number of parameters ρ^2 (market shares)		25	66				
		0.415	0.452				
	Akaike Information Criterion (AIC)	7663.9	7182.2	_			
	Bayesian Information Criterion (BIC)	7825.4	7615.0			15	

Results (3) – Class profiling

iversity

Attribute	Units	Class I (46.8%)	Class 2 (15.5%)	Class 3 (37.8%)
Mean predicted choice probabilities			(13.370)	(37.070)
ICE	-	0.095	0.158	0.143
EV	-	0.435	0.351	0.346
HEV	-	0.430	0.414	0.436
Sociodemographic attributes				
Population density	Persons/hectare	26.8	24.7	28.3
% of women	-	67.1	41.7	67.8
Annual income	Thousands of GBP	61.3	59.6	51.9
Car attributes				
Number of cars	-	1.7	1.8	1.5
% of households owning an EV/HEV	%	7.9	21.2	5.7
% of cars bought as new	-	33.0	42.8	15.7
Annual mileage driving (by car)	Thousands of miles	17.1	17.8	16.2

- **Class I: Possible innovators**. High income, high EV probability. Relatively low activations and valences.
- Class 2: Innovators. Not majorly concerned with costs. High activations and valences for EVs, environmental awareness, and proinnovation character. Over 21% already own an EV/HEV.
- **Class 3: Sceptics**. Low-income households in densely populated areas. Concerned about cost factors (high activations and valences).

Results (4) – Post-estimation

• **"Pseudo-elasticities"** – Even if elasticities do not have a real meaning with SC data, we computed them as they provide a sense of attribute importance:

Туре	Attribute	Class I	Class 2	Class 3	Model
	Purchase price (Thousands of GBP)	-0.710	-0.086	-1.900	-1.034
	Annual operation cost (Thousands of GBP)	-0.485	-0.035	-0.290	-0.355
	Driving range (Hundreds of miles)	0.611	0.494	0.290	0.483
Own	Distance to charge (Miles)	_	—	-0.309	-0.112
	Charging time (Hours)	-0.158	-0.062	-0.103	-0.127
	HOTCO activation	0.034	0.483	0.029	0.104
	HOTCO valence	_	0.139	0.072	0.040
	Purchase price (Thousands of GBP)	0.176	0.033	0.551	0.274
	Annual operation cost (Thousands of GBP)	0.191	0.042	0.154	0.160
	Driving range (Hundreds of miles)	-0.118	-0.075	-0.162	-0.127
Cross – HEV	Distance to charge (Miles)	_	_	0.067	0.023
	Charging time (Hours)	0.005	0.003	0.004	0.004
	HOTCO activation	-0.012	-0.195	-0.013	-0.04 I
	HOTCO valence	_	-0.046	-0.023	-0.013
	Purchase price (Thousands of GBP)	0.428	0.038	1.050	0.601
	Annual operation cost (Thousands of GBP)	0.298	0.033	0.185	0.219
	Driving range (Hundreds of miles)	-0.348	-0.125	-0.358	-0.330
Cross – ICE	Distance to charge (Miles)	_	_	0.128	0.049
	Charging time (Hours)	0.016	0.005	0.009	0.012
	HOTCO activation	-0.032	-0.290	-0.025	-0.067
	HOTCO valence	_	-0.076	-0.046	-0.023

Discussion

- HOTCO considers the effects of attitudes and emotional appraisal in decision-making, lifting the restriction of linear and unidirectional links between constructs.
- The latent class analysis identifies decision-making profiles that might get overlooked by generic models.
- Both can be useful for policy and addressing user heterogeneity.
- Specifically, "Possible innovators" are worried about the environmental effects
 of car purchases but appear constrained by cost and operative concerns.
 They are likely the group to which measures should be targeted.

Limitations and further research

- Integrating the HOTCO paradigm into discrete choice models might not be as straightforward. Further theoretical work is still required.
- HOTCO requires a great amount of information to build the connectionist networks. Simplified questionnaires might be explored.
- Further research:
 - HOTCO outputs have previously been used to model communication processes and attitudinal change over time (e.g., Wolf et al., 2015).
 - An application considering the HOTCO model and a latent class choice model inside an agent-based model is underway!

17th International Conference on Travel Behaviour Research – IATBR July 14-18, 2024 – Vienna, Austria

Thank you!

Cristian Domarchi <u>C.A.Domarchi2@Newcastle.ac.uk</u> <u>http://cdomarchi.github.io</u>

17.07.24

17th International Conference on Travel Behaviour Research – IATBR July 14-18, 2024 – Vienna, Austria

Heterogeneity in preferences for alternative fuel vehicles: A latent class choice model including psychological factors

Cristian Domarchi Elisabetta Cherchi Quoc C.Vuong

17.07.24

References

- Thagard, P. (1989) 'Explanatory coherence', Behavioral and Brain Sciences, 12, pp. 435-502.
- Thagard, P. (2001) 'How to make decisions: Coherence, emotion, and practical inference', in Millgram, E. (ed.) Varieties of Practical Inference. Cambridge, MA, US: MIT Press, pp. 355-371.
- Thagard, P. and Millgram, E. (1997) 'Inference to the best plan: A coherence theory of decision', in Ram, A. and Leake, D.B. (eds.) Goal-driven Learning. Cambridge, MA, US: MIT Press, pp. 439-454.
- Wolf, I., Schröder, T., Neumann, J. and de Haan, G. (2015) 'Changing minds about electric cars: An empirically grounded agent-based modeling approach', Technological Forecasting and Social Change, 94, pp. 269-285.

